Curriculum:

Organizers
1. Reaction Kinetics
2. Dynamic Equilibrium
3. Solubility Equilibria
4. Acids, Bases, and Salts
5. Oxidation – Reduction

Sub-Organizers
A, B, C
D, E, F
G, H, I
J, K, L, M, N, O, P, Q, R
S, T, U, V, W

Part A: Multiple Choice

<table>
<thead>
<tr>
<th>Q</th>
<th>K</th>
<th>C</th>
<th>S</th>
<th>CO</th>
<th>PLO</th>
<th>Q</th>
<th>K</th>
<th>C</th>
<th>S</th>
<th>CO</th>
<th>PLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>K</td>
<td>1</td>
<td>1</td>
<td>A5</td>
<td>25</td>
<td>B</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>K8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>U</td>
<td>2</td>
<td>1</td>
<td>A3</td>
<td>26</td>
<td>D</td>
<td>H</td>
<td>1</td>
<td>4</td>
<td>K9</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>K</td>
<td>1</td>
<td>1</td>
<td>B1</td>
<td>27</td>
<td>C</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>L3</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>B2</td>
<td>28</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>L6</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>K</td>
<td>1</td>
<td>1</td>
<td>C3</td>
<td>29</td>
<td>A</td>
<td>K</td>
<td>1</td>
<td>4</td>
<td>N1</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>C4</td>
<td>30</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>M1, N2</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>D4</td>
<td>31</td>
<td>B</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>N3</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>U</td>
<td>1</td>
<td>2</td>
<td>D8</td>
<td>32</td>
<td>D</td>
<td>H</td>
<td>1</td>
<td>4</td>
<td>O3</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>2</td>
<td>E2, F3</td>
<td>33</td>
<td>D</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>O4</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>2</td>
<td>E4</td>
<td>34</td>
<td>D</td>
<td>K</td>
<td>1</td>
<td>4</td>
<td>P1</td>
</tr>
<tr>
<td>11</td>
<td>A</td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>F2</td>
<td>35</td>
<td>B</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>P3</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>F3</td>
<td>36</td>
<td>C</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>P4</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>U</td>
<td>2</td>
<td>2</td>
<td>F4</td>
<td>37</td>
<td>B</td>
<td>K</td>
<td>1</td>
<td>4</td>
<td>R3</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>2</td>
<td>F7</td>
<td>38</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>S2</td>
</tr>
<tr>
<td>15</td>
<td>D</td>
<td>K</td>
<td>1</td>
<td>3</td>
<td>G2</td>
<td>39</td>
<td>D</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>S1</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>H</td>
<td>1</td>
<td>3</td>
<td>G6, E2</td>
<td>40</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>S2</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>U</td>
<td>2</td>
<td>3</td>
<td>H2</td>
<td>41</td>
<td>D</td>
<td>H</td>
<td>2</td>
<td>5</td>
<td>S4</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>3</td>
<td>H4</td>
<td>42</td>
<td>D</td>
<td>H</td>
<td>2</td>
<td>5</td>
<td>T4</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>3</td>
<td>H5</td>
<td>43</td>
<td>D</td>
<td>K</td>
<td>1</td>
<td>5</td>
<td>U1</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>K</td>
<td>1</td>
<td>3</td>
<td>I2</td>
<td>44</td>
<td>A</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>U3, 5</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>U</td>
<td>2</td>
<td>3</td>
<td>I4</td>
<td>45</td>
<td>B</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>U4, 6</td>
</tr>
<tr>
<td>22</td>
<td>D</td>
<td>U</td>
<td>2</td>
<td>3</td>
<td>I4</td>
<td>46</td>
<td>D</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>U9</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>J3</td>
<td>47</td>
<td>C</td>
<td>U</td>
<td>2</td>
<td>5</td>
<td>W4</td>
</tr>
<tr>
<td>24</td>
<td>B</td>
<td>U</td>
<td>1</td>
<td>4</td>
<td>K1, 2</td>
<td>48</td>
<td>C</td>
<td>U</td>
<td>1</td>
<td>5</td>
<td>W4</td>
</tr>
</tbody>
</table>

Multiple Choice = 60 marks (48 questions)
Part B: Written Response

<table>
<thead>
<tr>
<th>Q</th>
<th>B</th>
<th>C</th>
<th>S</th>
<th>CO</th>
<th>PLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>U</td>
<td>3</td>
<td>1</td>
<td>B6</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>U</td>
<td>3</td>
<td>1</td>
<td>C2, C5</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>H</td>
<td>3</td>
<td>2</td>
<td>E2</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>U</td>
<td>3</td>
<td>2</td>
<td>F5</td>
</tr>
<tr>
<td>5.</td>
<td>5</td>
<td>U</td>
<td>4</td>
<td>3</td>
<td>I6</td>
</tr>
<tr>
<td>6.</td>
<td>6</td>
<td>H</td>
<td>4</td>
<td>4</td>
<td>H3, J3</td>
</tr>
<tr>
<td>7.</td>
<td>7</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>K5, K11</td>
</tr>
<tr>
<td>8.</td>
<td>8</td>
<td>U</td>
<td>2</td>
<td>4</td>
<td>L11</td>
</tr>
<tr>
<td>9.</td>
<td>9</td>
<td>U</td>
<td>5</td>
<td>4</td>
<td>M5</td>
</tr>
<tr>
<td>10.</td>
<td>10</td>
<td>U</td>
<td>3</td>
<td>4</td>
<td>P6</td>
</tr>
<tr>
<td>11.</td>
<td>11</td>
<td>U</td>
<td>4</td>
<td>5</td>
<td>T2</td>
</tr>
<tr>
<td>12.</td>
<td>12</td>
<td>H</td>
<td>4</td>
<td>5</td>
<td>W4</td>
</tr>
</tbody>
</table>

Written Response = 40 marks

Multiple Choice = 60 (48 questions)

Written Response = 40 (12 questions)

EXAMINATION TOTAL = 100 marks

LEGEND:
- **Q** = Question Number
- **K** = Keyed Response
- **C** = Cognitive Level
- **B** = Score Box Number
- **S** = Score
- **CO** = Curriculum Organizer
- **PLO** = Prescribed Learning Outcome
1. Using the axes below, sketch a PE diagram for the reacting system where: \(\Delta H = -30 \text{ kJ/mol} \) and \(E_a = 50 \text{ kJ/mol} \) \((3 \text{ marks})\)

Solution:

For Example:

See graph above.
2. Consider the following reaction mechanism:

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>$2\text{NO} \rightarrow \text{N}_2\text{O}_2$</td>
</tr>
<tr>
<td>Step 2</td>
<td>$\text{N}_2\text{O}_2 + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$</td>
</tr>
<tr>
<td>Step 3</td>
<td>$\text{N}_2\text{O} + \text{H}_2 \rightarrow \text{N}_2 + \text{H}_2\text{O}$</td>
</tr>
</tbody>
</table>

a) Determine the overall reaction. (2 marks)

Solution:

Overall Reaction: $2\text{NO} + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$ ← \{ 1 mark for reactants, 1 mark for products \}

b) Identify a reaction intermediate. (1 mark)

Solution:

$\text{N}_2\text{O}_2 \text{ OR } \text{N}_2\text{O}$ ← 1 mark
3. Consider the following equilibrium:

\[\text{CH}_4(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}(g) + 3\text{H}_2(g) \]

<table>
<thead>
<tr>
<th>(K_{eq})</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.78 \times 10^{-3})</td>
<td>800(^\circ)C</td>
</tr>
<tr>
<td>(4.68 \times 10^{-2})</td>
<td>1000(^\circ)C</td>
</tr>
</tbody>
</table>

Is the forward reaction in this equilibrium exothermic or endothermic? Explain your answer. (3 marks)

Solution:

For Example:

This equilibrium is endothermic. \(\leftarrow 1\) mark

Since \(K_{eq}\) increases as a result of a temperature increase, equilibrium has shifted to the right. \(\leftarrow 2\) marks
4. Consider the following equilibrium:

\[\text{CO}_{(g)} + \text{Cl}_2(g) \rightleftharpoons \text{COCl}_2(g) \]

At equilibrium, the system contains 2.00 mol CO, 1.00 mol Cl₂ and 0.200 mol COCl₂ in a 2.0 L container. Calculate the value of \(K_{eq} \). (3 marks)

Solution:

For Example:

\[K_{eq} = \frac{[\text{COCl}_2]}{[\text{CO}][\text{Cl}_2]} \]

\[= \frac{(0.200 \text{ mol/2.0 L})}{(2.00 \text{ mol/2.0 L})(1.00 \text{ mol/2.0 L})} \]

\[= \frac{(0.100)}{(1.00)(0.500)} \]

\[= 0.20 \]

(Deduct \(\frac{1}{2} \) mark for incorrect significant figures.)
5. Calculate the mass of NaI necessary to begin precipitation of Cu⁺ from a 250.0 mL sample of 0.010 M Cu(NO₃)₂.

Solution:

For Example:

\[
\text{CuI}_\text{(s)} \rightleftharpoons \text{Cu}^+\text{(aq)} + \text{I}^-\text{(aq)}
\]

\[
K_{sp} = [\text{Cu}^+][\text{I}^-] = 1.3 \times 10^{-12}
\]

\[
[\text{I}^-] = \frac{K_{sp}}{[\text{Cu}^+]} = \frac{1.3 \times 10^{-12}}{0.010} = 1.3 \times 10^{-10} \text{ M}
\]

\[
[\text{NaI}] = [\text{I}^-] = 1.3 \times 10^{-10} \text{ M}
\]

mass of NaI = \(1.3 \times 10^{-1} \text{ mol/L} \times \frac{149.9 \text{ g}}{\text{mole}} \times 0.250 \text{ L}
\]

\[
= 4.9 \times 10^{-9} \text{ g}
\]

\(\leftarrow 2 \text{ marks}\)

\(\leftarrow 2 \text{ marks}\)
6. When a solution of \(\text{Na}_2\text{CO}_3(\text{aq}) \) is mixed with a solution of \(\text{Ca(NO}_3\text{)}_2(\text{aq}) \), a precipitate forms.

 a) Write the net ionic equation for the precipitation reaction.

 Solution:

 For Example:

 \[
 \text{Ca}^{2+}(\text{aq}) + \text{CO}_3^{2-}(\text{aq}) \rightarrow \text{CaCO}_3(\text{s}) \quad \leftarrow 1 \text{ mark}
 \]

 b) Explain what happens to the precipitate when HCl is added.

 Solution:

 For Example:

 Addition of HCl provides \(\text{H}^+(\text{aq}) \) which reacts with the \(\text{CO}_3^{2-}(\text{aq}) \):

 \[
 \text{H}^+(\text{aq}) + \text{CO}_3^{2-}(\text{aq}) \rightarrow \text{HCO}_3^-(\text{aq}) \quad \leftarrow 3 \text{ marks}
 \]

 This reduces the \([\text{CO}_3^{2-}(\text{aq})] \) in the solubility equilibrium,

 \[
 \text{CaCO}_3(\text{s}) \rightleftharpoons \text{Ca}^{2+}(\text{aq}) + \text{CO}_3^{2-}(\text{aq})
 \]

 causing more solid to dissolve to offset the stress caused by the reduction in concentration.
7. Write a chemical reaction showing an amphiprotic anion reacting as a base in water. (2 marks)

Solution:

For Example:

\[
\text{HPO}_4^{2-} + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{PO}_4^- + \text{OH}^-
\]

← 2 marks
8. Calculate the pOH of 0.25 M Sr(OH)$_2$. (2 marks)

Solution:

For Example:

\[
\left[\text{OH}^- \right] = 2(0.25 \text{ M}) = 0.50 \text{ M} \quad \leftarrow 1 \text{ mark}
\]

\[
\text{pOH} = -\log(0.50)
\]

\[
= 0.30 \quad \leftarrow 1 \text{ mark}
\]

(Deduct $\frac{1}{2}$ mark for incorrect significant figures.)
9. A 2.00 M diprotic acid has a pH of 0.50. Calculate its K_a value. \hfill (5 marks)

Solution:

For Example:

\[
\begin{array}{c|ccc}
[I] & H_2X & + & H_2O \\
[C] & -0.316 & + & 0.316 \\
[E] & 1.684 & & 0.316
\end{array}
\]

\[
\begin{align*}
\text{pH} = 0.50; \quad \left[H_3O^+ \right] &= 10^{-0.50} = 0.316 \text{ M} \\
K_a &= \frac{\left[H_3O^+ \right] \left[HX^- \right]}{\left[H_2X \right]} = \frac{(0.316)^2}{1.684} = 5.9 \times 10^{-2}
\end{align*}
\]

$\leftarrow 2$ marks $\quad \leftarrow 1$ mark $\quad \leftarrow 2$ marks
10. The following two experiments were conducted:

 Titration A: A strong acid was titrated with a strong base.
 Titration B: A weak acid was titrated with a strong base.

a) How does the pH at the equivalence point of Titration B compare with the pH at
 the equivalence point of Titration A?
 (1 mark)

Solution:

For Example:

The pH at the equivalence point of Titration A = 7.0.
The pH at the equivalence point of Titration B > 7.0. \[\rightarrow 1 \text{ mark} \]

b) Explain your answer to a).
 (2 marks)

Solution:

For Example:

Neutral salt formed in titration A, a basic salt is formed in
titration B. \[\rightarrow 2 \text{ marks} \]
11. Balance the following redox reaction.

\[\text{Sb} + \text{NO}_3^- \rightarrow \text{Sb}_2\text{O}_5 + \text{NO} \] (acidic)

Solution:

For Example:

\[
\begin{align*}
\left(5\text{H}_2\text{O} + 2\text{Sb} \rightarrow \text{Sb}_2\text{O}_5 + 10\text{H}^+ + 10\text{e}^- \right) \times 3 \\
\left(3\text{e}^- + 4\text{H}^+ + \text{NO}_3^- \rightarrow \text{NO} + 2\text{H}_2\text{O} \right) \times 10 \\
15\text{H}_2\text{O} + 6\text{Sb} + 40\text{H}^+ + 10\text{NO}_3^- \rightarrow 3\text{Sb}_2\text{O}_5 + 30\text{H}^+ + 10\text{NO} + 20\text{H}_2\text{O} \\
10\text{H}^+ + 6\text{Sb} + 10\text{NO}_3^- \rightarrow 3\text{Sb}_2\text{O}_5 + 10\text{NO} + 5\text{H}_2\text{O}
\end{align*}
\]

2 marks
(1 mark for each half-reaction)
1 mark for electron balance
1 mark for overall reaction
12. A 1.0 M HCl solution is electrolyzed using a copper anode and an inert carbon cathode. Predict the half-reactions that will occur and describe what you would observe at each electrode. (4 marks)

Solution:

For Example:

Anode half-reaction: \(\text{Cu}(s) \rightarrow \text{Cu}^{2+} + 2e^- \)

Anode observations:
Electrode is eaten away and solution turns blue. \(\leftarrow 2 \text{ marks} \)

Cathode half-reaction: \(2\text{H}^+ + 2e^- \rightarrow \text{H}_2(g) \)

Cathode observations:
Bubbles form, but no change to electrode. \(\leftarrow 2 \text{ marks} \)